Entries tagged with python

Write your own miniature Redis with Python


The other day the idea occurred to me that it would be neat to write a simple Redis-like database server. While I've had plenty of experience with WSGI applications, a database server presented a novel challenge and proved to be a nice practical way of learning how to work with sockets in Python. In this post I'll share what I learned along the way.

The goal of my project was to write a simple server that I could use with a task queue project of mine called huey. Huey uses Redis as the default storage engine for tracking enqueued jobs, results of finished jobs, and other things. For the purposes of this post, I've reduced the scope of the original project even further so as not to muddy the waters with code you could very easily write yourself, but if you're curious, you can check out the end result here (documentation).

The server we'll be building will be able to respond to the following commands:

  • GET <key>
  • SET <key> <value>
  • DELETE <key>
  • MGET <key1> ... <keyn>
  • MSET <key1> <value1> ... <keyn> <valuen>

We'll support the following data-types as well:

  • Strings and Binary Data
  • Numbers
  • NULL
  • Arrays (which may be nested)
  • Dictionaries (which may be nested)
  • Error messages


LSM Key/Value Storage in SQLite3


Several months ago I was delighted to see a new extension appear in the SQLite source tree. The lsm1 extension is based on the LSM key/value database developed as an experimental storage engine for the now-defunct SQLite4 project. Since development has stopped on SQLite4 for the forseeable future, I was happy to see this technology being folded into SQLite3 and was curious to see what the SQLite developers had in mind for this library.

The SQLite4 LSM captured my interest several years ago as it seemed like a viable alternative to some of the other embedded key/value databases floating around (LevelDB, BerkeleyDB, etc), and I went so far as to write a set of Python bindings for the library. As a storage engine, it seems to offer stable performance, with fast reads of key ranges and fast-ish writes, though random reads may be slower than the usual SQLite3 btree. Like SQLite3, the LSM database supports a single-writer/multiple-reader transactional concurrency model, as well as nested transaction support.

The LSM implementation in SQLite3 is essentially the same as that in SQLite4, plus some additional bugfixes and performance improvements. Crucially, the SQLite3 implementation comes with a standalone extension that exposes the storage engine as a virtual table. The rest of this post will deal with the virtual table, its implementation, and how to use it.


Ditching the Task Queue for Gevent

Task queues are frequently deployed alongside websites to do background processing outside the normal request/response cycle. In the past I've used them for things like sending emails, generating thumbnails, warming caches, or periodically fetching remote resources. By pushing that work out of the request/response cycle, you can increase the throughput (and responsiveness) of your web application.

Depending on your workload, though, it may be possible to move your task processing into the same process as your web server. In this post I'll describe how I did just that using gevent, though the technique would probably work well with a number of different WSGI servers.


Going Fast with SQLite and Python

Sqlite Logo

In this post I'd like to share with you some techniques for effectively working with SQLite using Python. SQLite is a capable library, providing an in-process relational database for efficient storage of small-to-medium-sized data sets. It supports most of the common features of SQL with few exceptions. Best of all, most Python users do not need to install anything to get started working with SQLite, as the standard library in most distributions ships with the sqlite3 module.


Python 3 is a mess. How did this happen?

Python3 is a mess. How did this happen? So many of the changes seem to me to fly in the face of the whole Zen of Python aesthetic. The two biggest offenders, in my opinion, are asyncio and type hints.


Multi-threaded SQLite without the OperationalErrors

Sqlite Logo

SQLite's write lock and pysqlite's clunky transaction state-machine are a toxic combination for multi-threaded applications. Unless you are very diligent about keeping your write transactions as short as possible, you can easily wind up with one thread accidentally holding a write transaction open for an unnecessarily long time. Threads that are waiting to write will then have a much greater likelihood of timing out while waiting for the lock, giving the illusion of poor performance.

In this post I'd like to share a very effective technique for performing writes to a SQLite database from multiple threads.


Suffering for fashion: a glimpse into my Linux theming toolchain


My desktop at the time of writing.


Here it is a couple months later.

It's been over 2 years since I wrote about the tooling I use to theme my desktop, so I thought I'd post about my current scripts...


"For Humans" makes me cringe

for chodes

When Kenneth Reitz created the requests library, the Python community rushed to embrace the project, as it provided (finally) a clean, sane API for making HTTP requests. He subtitled his project "Python HTTP Requests for Humans", referring, I suppose, to the fact that his API provided developer-friendly APIs. If naming things "for humans" had stopped there, that would have been fine with me, but instead there's been a steady stream of new projects describing themselves as being "For Humans" and I have issues with that.


Five reasons you should use SQLite in 2016

Sqlite Logo

If you haven't heard, SQLite is an amazing database capable of doing real work in real production environments. In this post, I'll outline 5 reasons why I think you should use SQLite in 2016.


Announcing sophy: fast Python bindings for Sophia Database


Sophia is a powerful key/value database with loads of features packed into a simple C API. In order to use this database in some upcoming projects I've got planned, I decided to write some Python bindings and the result is sophy. In this post, I'll describe the features of Sophia database, and then show example code using sophy, the Python wrapper.

Here is an overview of the features of the Sophia database:

  • Append-only MVCC database
  • ACID transactions
  • Consistent cursors
  • Compression
  • Ordered key/value store
  • Range searches
  • Prefix searches